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The results from a numerical investigation of inertial viscoelastic flow past a
circular cylinder are presented which illustrate the significant effect that dilute
concentrations of polymer additives have on complex flows. In particular, effects
of polymer extensibility are studied as well as the role of viscoelasticity during three-
dimensional cylinder wake transition. Simulations at two distinct Reynolds numbers
(Re = 100 and Re = 300) revealed dramatic differences based on the choice of the
polymer extensibility (L2 in the FENE-P model), as well as a stabilizing tendency of
viscoelasticity. For the Re = 100 case, attention was focused on the effects of increasing
polymer extensibility, which included a lengthening of the recirculation region
immediately behind the cylinder and a sharp increase in average drag when compared
to both the low extensibility and Newtonian cases. For Re = 300, a suppression of the
three-dimensional Newtonian mode B instability was observed. This effect is more
pronounced for higher polymer extensibilities where all three-dimensional structure
is eliminated, and mechanisms for this stabilization are described in the context of
roll-up instability inhibition in a viscoelastic shear layer.

1. Introduction
The numerical study of viscoelastic flows has become a very important source of
insight into the physical processes that govern the interaction between polymer
additives and the structure of complex fluid motion. Adding dilute concentrations
of polymer can drastically alter the characteristics of the fluid flow, therefore many
different applications have sought to exploit this phenomenon by better understanding
the dynamics of polymer solutions within different flow regimes. A recent, well-
known example is turbulent skin friction drag reduction, an effect that has been
experimentally observed for over 50 years, but only over the past decade has a
large body of numerical simulations truly answered the underlying questions of how
turbulent flow is altered by the presence of polymers (Sureshkumar, Beris & Handler
1997; Sibilla & Baron 2002; Dubief et al. 2004, 2005; Dimitropoulos et al. 2005, 2006;
Gupta, Sureshkumar & Khomami 2005; Li, Sureshkumar & Khomami 2006). For
instance, Dubief et al. (2005) revealed reductions in wall-normal fluctuations in areas
correlated with high polymer stretch, suggesting energy extraction by the polymer
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from the near-wall vortical structures. This removal of turbulent energy from the flow
field and the following deposition of that energy into near-wall high-speed streaks
also uncovered a self-regeneration cycle that sustains the turbulence but at the same
time reduces the skin friction. Knowledge gained from these types of studies can aid
in the better design of solution injectors and experimental set-ups, and eventually
allow for the feasibility of new applications to be evaluated.

The existing turbulent drag reduction studies, however, are limited in their scope.
These studies, which make up a significant fraction of all high-Reynolds-number
viscoelastic flow simulations to date, have been confined to Cartesian grids, focusing
primarily on flow through plane channels or over flat plates (Sureshkumar & Beris
1995; Sureshkumar et al. 1997; Dimitropoulos, Sureshkumar & Beris 1998; Dubief
et al. 2004). Furthermore, studies which do simulate three-dimensional viscoelastic
flows at high Reynolds numbers, such as that done by Ma, Symeonidis & Karniadakis
(2003), are very few in number. Therefore, many of the same underlying questions
surrounding polymer interaction with flow features still remain unanswered for
more complex types of flow. For this reason, the current investigation will focus
on simulating a canonical bluff-body flow: viscoelastic flow around a circular cylinder
at moderate Reynolds numbers.

Many studies spanning a wide parameter space have been devoted to studying
viscoelastic flow over a cylinder. For the creeping flow (zero-Reynolds-number) limit,
a large body of literature exists for theoretical (Ultman & Denn 1971; Mena &
Caswell 1974), experimental (Broadbent & Mena 1974; Manero & Mena 1981;
McKinley, Armstrong & Brown 1993) and numerical (Townsend 1980; Chilcott &
Rallison 1998; Liu et al. 1998; Phan-Thien & Dou 1999) investigations. Much of the
focus of these and similar studies are the purely elastic instabilities which occur at
moderate-to-high Weissenberg numbers of inertialess viscoelastic flows past cylinders,
arrays of cylinders and spheres. Because of the form of the governing equations
in the zero-Reynolds-number limit (nonlinear convection neglected), the numerical
simulation of these types of flows usually involves finite element techniques, finite
volume techniques, or some hybrid of the two, and has been performed so many
times for such a wide variety of non-Newtonian constitutive models that creeping
flow past a cylinder is commonly used as a validation test case (Oliveira, Pinho
& Pinto 1998; Fan, Tanner & Phan-Thien 1999; Wapperom & Webster 1999; Ma
et al. 2003). However, since the low-Reynolds-number regime is not the primary
focus of the present discussion, the details of these studies will not be given
here.

For the case of finite-Reynolds-number viscoelastic flow over a cylinder, the
majority of the literature consists of experimental investigations and only recently
have numerical simulations been performed. Early experiments done by Gadd (1966)
showed a significant decrease in the vortex shedding frequency due to viscoelasticity
at a Reynolds number of roughly 240. Gadd (1966) further demonstrated that
the fluid elasticity is responsible for this reduction, since solutions of inelastic
guar gum exhibited no frequency change. These findings were supported by the
experiments performed by Kalashnikov & Kudin (1970), who observed shedding
frequency reduction for viscoelastic polyethylene oxide (PEO) solutions at slightly
lower Reynolds numbers. However, for degraded (inelastic) solutions of PEO and
inelastic guar gum solutions, either no change or only slight increases in the Strouhal
number were seen. Usui, Shibata & Sano (1980) later experimentally showed the
same decrease in Strouhal number for 100 <Re < 300, empirically determining that
the difference StNewtonian −Stviscoelastic ∼ Wi0.32. Moreover, these researchers also showed
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that for dilute PEO solutions the magnitude of the reduction in St increased with
polymer concentration.

One of the first experimental studies to comment on the drag behaviour of
inertial viscoelastic flows over cylinder was that of James & Gupta (1971). In their
experiments, they showed that for several different blends of Polyox WSR brand PEO
at Reynolds numbers below 200, the drag was actually higher (the magnitude of the
increase depending on the polymer used) than the corresponding value for Newtonian
flow. They then showed that for a single blend, solutions with different concentrations
all collapsed to one drag curve when plotted against D2/λν = Re/Wi = 1/E (where
E is the elasticity parameter E ≡ Wi/Re). Somewhat contrary to this work, however,
were the results from Kato & Mizuno (1983) a decade later, showing that the form
drag for low Reynolds number stayed roughly equal to the Newtonian case for various
concentrations and that at high Reynolds number (2000 < Re < 10 000), form drag
reductions of up to 33 % can be seen for certain types and concentrations of PEO
solutions. Furthermore, by measuring angular pressure distributions along the cylinder
surface, the cause of the drag reduction and the reduction in shedding frequency are
argued to be due to a rise in back pressure and a delay in separation, respectively. For
polymer solutions with slightly different shear thinning characteristics, the same rise
in back pressure and resulting reduction in form drag was seen by Coelho & Pinho
(2004) for carboxymethyl cellulose (CMC) and methyl hydroxyethyl cellulose (brand
name tylose) solutions; however, this was accompanied by an increase in vortex
shedding frequency, contrary to previous experiments. This difference was explained
by their own previous experiments (Coelho & Pinho 2003a ,b) as resulting from the
opposite response of the flow to fluid elasticity and shear thinning (elasticity tending
to decrease the vortex shedding frequency while shear thinning tending to increase
it). The fluids used in all of their experiments exhibited a stronger effect due to shear
thinning.

Another striking feature of viscoelastic cylinder flow at finite Reynolds numbers
is the ability of polymer solutions to suppress instabilities in the wake. This effect
presents itself in many different forms, one of which is illustrated by a lengthening
of the recirculation bubble behind the cylinder. Previous studies on the stability of
viscoelastic free shear layers have demonstrated the suppression of Kelvin–Helmholtz
type instabilities. Viscoelasticity shifts the Kelvin–Helmholtz instabilities to larger
wavenumbers and reduces the growth rate (see Azaiez & Homsy 1994a ,b; Kumar &
Homsy 1999). In the context of flow over a cylinder, the shear layers that surround the
recirculation zone behind the cylinder are consequently lengthened due to the slower
growth of the instability leading to vortex formation. This qualitative effect has been
seen numerous times both in experiments and in numerical simulations (Cadot &
Lebey 1998; Cadot & Kumar 2000; Oliveira 2001; Coelho & Pinho 2003b; Sahin
& Owens 2004). Further demonstrating the stabilizing effect of viscoelasticity in the
wake are the experiments of Cressman, Bailey & Goldburg (2001), who concluded
that the fluid extensional viscosity is responsible for the suppression of transverse
velocity fluctuations in the cylinder wake. Since these velocity fluctuations presumably
excite the instability modes in the shear layer, their suppression is consistent with the
notion that vortex formation should be delayed.

Another indication of stabilization due to viscoelasticity is its effect on the various
critical Reynolds numbers which delineate the different cylinder flow regimes. In
their detailed study on viscoelastic cylinder flow stability, Pipe & Monkewitz (2006)
found that as either the elasticity number E = Wi/Re or the polymer concentration
increases, the critical Reynolds number for the onset of vortex formation increases
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nearly linearly. They too measure a reduction in transverse velocity fluctuations at
high concentrations, suggesting again that a dilute concentration of polymers can
delay the growth of instabilities. Similar results are obtained by Sahin & Owens
(2004), who performed a linear stability analysis as well as numerical simulations to
quantitatively show an increase in the critical Reynolds number marking the onset
of vortex shedding. At higher Reynolds numbers, transitions beyond the onset of
vortex shedding that occur have been extensively characterized for Newtonian flow
(see Williamson 1996b for a summary), and these are also affected by the presence of
viscoelasticity. Cadot & Kumar (2000) focused on the interaction of polymer additives
with three-dimensional instabilities and revealed a near complete suppression of the
spanwise mode A instabilities that characterize the first modes of three-dimensional
cylinder flow transition (Williamson 1996a). A few years later, for shear thinning (less
elastic) fluids, Coelho & Pinho (2003a ,b) actually observed a reduction in the critical
Reynolds numbers characterizing the end of the transition regime and the beginning
of the shear layer transition.

As mentioned previously, the large majority of viscoelastic cylinder flow studies
at finite Reynolds number have involved experimental techniques, while numerical
investigations are few in number. The most recent of these are that of Oliveira (2001)
and Sahin & Owens (2004), who both utilize the modified FENE-CR rheological
model to compute viscoelastic flow over a cylinder at finite Reynolds numbers.
In both studies, reductions in Strouhal number, decreases in drag and lengthening
of the recirculation region are all observed and are consistent with most previous
experiments, and insight is gained into how polymeric additives can influence the flow
features. After confirming results with these existing studies, it is the objective of this
investigation to build upon the knowledge gained from these works and to discuss
interesting new phenomena which occur for the FENE-P constitutive model at larger
Reynolds numbers and higher polymer extensibilities.

2. Problem formulation
2.1. Governing equations

For an incompressible fluid in the presence of polymer additives, the dimensionless
governing equations are obtained by enforcing conservation of mass and momentum
on a differential fluid element:

∂uj

∂xj

= 0, (2.1)

∂ui

∂t
+ uj

∂ui

∂xj

= − ∂p

∂xi

+
β

Re

∂2ui

∂xj∂xj

+
1 − β
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1

Wi

∂τ
p
ij

∂xj

. (2.2)

These expressions closely resemble the dimensionless Navier–Stokes equations for
incompressible Newtonian flow with the exception of the polymer stress τ

p
ij , a term

which represents the additional body stresses due to the elasticity of the polymers
in the flow. To describe the degree of viscoelasticity, the Weissenberg number,
Wi = λU∞/D, is defined as the ratio of a characteristic polymer relaxation time scale
λ and a characteristic flow time scale U∞/D, where for this case D is the cylinder
diameter. The Reynolds number, Re = ρDU∞/(μs + μp), is a ratio of inertial forces
to viscous forces, and β , β = μs/(μs + μp), refers to the ratio of the zero-shear-rate
viscosity of the solvent to the zero-shear-rate viscosity of the total solution (μs is
the viscosity contribution from the solvent, μp is the viscosity contribution from the
polymer).
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In order to close this system of equations, a model for the polymer stress must be
introduced, and for this work the molecular-based FENE-P model is employed. This
model approximates an individual member of a dilute concentration of polymers as
a single dumbbell connected with a finitely extensible nonlinear elastic spring, and
through a balance of forces acting on the beads, an expression for the polymeric stress
τ

p
ij can be determined using kinetic theory (see Bird, Armstrong & Hassager 1987):

τ
p
ij =

cij

1 − ckk

L2

− δij . (2.3)

In this equation, L refers to the maximum polymer extensibility, which is non-
dimensionalized by the equilibrium length of a linear spring ((kT /H )1/2) where
T is the absolute temperature, k is Boltzmann’s constant and H is the Hookean
spring constant for an entropic spring. Also, cij represents the averaged polymer
conformation tensor (also scaled by the equilibrium Hookean spring length), which
is defined as the preaveraged diadic product of the polymer end-to-end vector and
is governed by the hyperbolic transport equation shown below (for discussion of the
mathematical character of the FENE-P fluid equation, see Purnode & Legat 1996).
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= − 1

Wi
τ

p
ij . (2.4)

The FENE-P model is chosen for this work based on its ability to properly represent
the finite extensibility, and thus the bounded stress, of the polymers. For problems
with large Wi and large strain rates, this feature is required in order to obtain
bound solutions, and linear springs such as the Oldroyd-B constitutive model cannot
be faithfully used. Moreover, the FENE-P model has been used in many previous
studies involving high-Reynolds-number viscoelastic flows, and its ability to provide
accurate physical insight into these types of problems has been demonstrated (see
Azaiez & Homsy 1994b; Sureshkumar et al. 1997; Kumar & Homsy 1999; Dubief
et al. 2004, 2005; Dimitropoulos et al. 2005, 2006).

Because the polymer conformation tensor cij is symmetric, these make up a set
of 10 coupled partial differential equations that, when solved properly, provide the
instantaneous velocity, pressure, polymer conformation and non-Newtonian stress
fields of a fluid with a dilute concentration of polymer additives. One point to note
is that one of the underlying suppositions is the ‘ocean of polymer’ approximation,
which assumes a uniform polymer concentration throughout the flow domain. In
certain cases this can be inappropriate, and using a method previously formulated,
an additional scalar transport equation for the polymer concentration can be coupled
into the above equations if desired (Dimitropoulos et al. 2006).

2.2. Numerical method

To solve these equations numerically, the viscoelastic code was built upon an existing
incompressible Newtonian flow solver developed at Stanford’s Centre for Turbulence
Research. This solver, named CDP (after the late Charles David Pierce), is based on
an unstructured finite volume formulation and is capable of computing over many
processors in parallel. To account for the presence of viscoelasticity, the polymer
stress term has been added to the momentum equation solver as a volumetric source
term, while the conformation tensor evolution equation is solved as six coupled scalar
transport equations.

First, a brief description of the underlying flow solver will be given, followed by
the details of the viscoelastic portion. As previously mentioned, the code is based
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on an unstructured formulation, thus the finite volume method is used to compute
collocated, node-based solutions to the governing mass and momentum equations. All
linear terms in the governing momentum equations are advanced simultaneously in
time using the semi-implicit Crank–Nicholson method, while the nonlinear convection
term is linearized and solved with a combination of Crank–Nicholson and Adams–
Bashforth discretizations. Spatial derivatives for the fluid velocity ui are approximated
using central differencing. To enforce mass conservation, a corrector step is performed
after solving the momentum equations which uses an advanced multi-grid technique to
solve the pressure Poisson equation, thus providing a solenoidal velocity field which
also satisfies the momentum equations. Further details can be found in previous
publications (see Ham & Iaccarino 2004; Mahesh, Constantinescu & Moin 2004;
Ham, Mattsson & Iaccarino 2006).

The divergence of the additional viscoelastic source term of the momentum
equations is computed using the most updated values of the conformation tensor cij .
One special note on handling this term is that for consistency, the divergence operator
is computed by using the chain rule on the right-hand side of (2.3) such that the extra
stress is written entirely in terms of the conformation tensor cij and its derivatives:
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∂
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∂
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(
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L2

)
(
1 − ckk

L2

)2
. (2.5)

This is done since cij is the transported variable, and because the condition of τ
p
ij

at the domain boundaries (particularly at the walls) is never specified, its derivative
cannot be calculated near the edges of the domain without additional information
about the polymer stress at the boundary.

For the conformation tensor evolution equation, the components cij are advanced in
time prior to solving the momentum equations. Since the polymer stress of the FENE-
P model becomes singular as the trace of the conformation tensor ckk approaches the
square of polymer maximum extensibility L2, careful attention must be paid to the
time advancing technique so as not to overstretch a polymer beyond its maximum
extension. As a result, a modified version of the novel method proposed by Dubief
et al. (2005) is used to advance the trace of the conformation tensor independently of
the individual components in a way that assures boundedness of the polymer stretch
ckk . A brief description of this method will be given here.

First, contracting (2.4) provides an evolution equation for the conformation tensor
trace ckk:

∂ckk

∂t
= Rkk − 1

Wi

(
ckk

ψ
− 3

)
. (2.6)

In this equation, ψ is defined as the term which appears in the denominator of the
polymer stress:

ψ = 1 − ckk

L2
, (2.7)
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and Rkk represents the contributions from both the advection term as well as the
upper convected derivative terms:

Rkk = −uj

∂ckk

∂xj

+ ckj

∂uk

∂xj

+ cjk

∂uk

∂xj

. (2.8)

Discretizing (2.6) in time using Crank–Nicholson for the singular term (ckk/ψ) and
treating all components of Rkk explicitly, a quadratic equation for ψ that only depends
on known values is obtained:
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(
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)
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− 3	t

L2Wi

)
− 	t

2Wi
=0. (2.9)

In this equation, superscript n refers to the current time level and n − 1 refers to
the previous time level where all quantities, notably Rkk , are considered known. As
pointed out in Dubief et al. (2005), it is trivial to show that the roots of (2.9) are
always non-zero, real and opposite in sign. Therefore, by choosing the positive root
for ψ , it is guaranteed that ckk/L

2 < 1 and thus that the conformation tensor trace
and the polymer stress will always remain upper bounded.

By solving this equation for the new value of ψ at the beginning of a time step,
before solving either the individual conformation tensor component equations or the
momentum equations, the denominator of the polymer stress τ

p
ij is considered known

throughout a given time step. To solve the evolution equations for the conformation
tensor components, all terms are again advanced in time with the Crank–Nicholson
method and scalar derivatives are now approximated using a quadratic upwind
interpolation for convective kinematics (QUICK) discretization.

Since the six conformation tensor component equations are coupled not only to each
other, but also to the momentum equations, inner iterations can be performed within
a time step to achieve consistent values of both velocity and polymer conformation.
For k inner iterations, the scalar transport equations, the momentum equations and
the pressure equation are all solved k times, using averaged values (between a given
time step’s original and most recently calculated values) for coupled terms appearing
in the equations. The extra bounding step of advancing ckk is not included within an
inner iteration, therefore the value calculated at the beginning of the time step is used
throughout.

One more point to note is that due to the hyperbolic nature of the conformation
tensor evolution equation, sharp gradients of polymer stress can theoretically form,
and like with shocks in compressible fluid flow, these bands can be numerically
difficult to resolve. As a result and despite the usage of the QUICK discretization for
scalar derivatives, a constant artificial dissipation for the cij equations is introduced
throughout the entire flow field, implemented by adding an extra diffusion term to
the left-hand side of (2.4):
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− cik
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− ckj

∂ui
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− Γ
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= − 1

Wi
τ

p
ij . (2.10)

In (2.10), Γ refers to the constant scalar diffusivity, chosen so that the Schmidt
number (Sc ≡ ν/Γ , the ratio of momentum diffusivity to scalar diffusivity) is about 10
for all cases discussed in this paper. For sake of comparison, previous drag reduction
(high Re) studies which employ a similar global artificial stress diffusion use Schmidt
numbers below a value of 1 (Sureshkumar & Beris 1995; Sureshkumar et al. 1997).
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The sensitivity of our simulations to this value has been examined and seen to have
little effect on the solution when chosen such that Sc � 10.

A quick summary of the numerical procedure through one time step (going from
step n to n + 1) is presented below:

(i) Equation for ckk is advanced in a way that guarantees polymer boundedness
and a value for ψn is obtained.

(ii) All six scalar equations for the conformation tensor components are solved
sequentially, advanced in time with a Crank–Nicholson scheme and using the value
of ψn determined in step (i) in the polymer stress denominator.

(iii) All three momentum equations are solved simultaneously (using the polymer
stress divergence calculated with cij and its derivatives) and advanced in time with
Crank–Nicholson.

(iv) Pressure is determined by solving a Poisson equation and used to correct the
velocity field calculated in step (iii).

(v) If inner iterations are present, steps (ii) through step (iv) are repeated.

2.3. Problem specification and boundary conditions

The problem definition is that of viscoelastic flow around a circular cylinder at
both Re = 100 and Re = 300. At present, simulations are limited to this moderate-
Reynolds-number range due to the large amount of computation time required to
probe higher Re. In general, cylinder flow is rich in physical effects such as shear
layers, recirculation regions, boundary layers and vortex dynamics, thus making this
problem ideal for studying complex viscoelastic effects. Furthermore, as the Reynolds
number is increased, we know that for a Newtonian fluid the flow type changes
dramatically, starting from steady laminar flow, changing to unsteady two-dimensional
vortex shedding, then going through several stages of three-dimensional transition
before finally reaching full turbulence (see Williamson 1996b). As a result, these
different stages also present opportunities to investigate the effect of viscoelasticity
under many different circumstances. Because the Newtonian counterpart has been
studied extensively in the past (much of which is reviewed in Williamson 1996b),
comparisons between Newtonian and non-Newtonian flows can be easily made. For
the cases chosen, Newtonian flow at Re = 100 lies within the two-dimensional laminar
vortex shedding regime, while the Re = 300 case lies within the initial stages of
three-dimensional transition.

For each different case, a slightly different mesh was used to perform the
calculations. A schematic of the x–y plane of the respective domains, denoted by
Mesh 1 and Mesh 2, is shown in figure 1. The primary difference between the domains
is that for Mesh 2, the downstream exit boundary was extended from 16.5D in Mesh 1
to 45D. Because the fluid motions are purely two-dimensional at a Reynolds number
of 100, the spanwise domain length is set at 1D and is discretized using only one cell
for all Re =100 cases. For the larger Reynolds number, however, 64 discretization
points were used over a span of 2πD in order to accurately capture the three-
dimensional behaviour. In both cases, the domain extends radially to 23D upstream
of the cylinder. A close up of the spanwise-normal plane of the unstructured mesh
surrounding the cylinder is shown in figure 2, and table 1 contains relevant mesh size
information.

The boundary conditions applied for all calculations are as follows. It is first useful
to note that Mesh 1 contains only two far-field boundaries: a curved inlet to the
left of the cylinder and a vertical outlet to the right, while Mesh 2 contains two
additional far-field boundaries, referred to in this section as the ‘top’ and ‘bottom’
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Figure 1. Schematic of x–y domains used for (a) Mesh 1: Re = 100, L2 = 100 cases and (b)
Mesh 2: Re =100, L2 = 10 000 cases as well as all Re = 300 cases.

Figure 2. Close-up of the x–y plane of the unstructured mesh used for cylinder calculations.

boundaries. Along the entire inlet, a unit velocity U∞ = [1, 0, 0] is assigned, as well as
the equilibrium polymer conformation cij,∞ = δij . At the domain outlet, a convective
outlet condition is applied to both the velocities as well as cij . Along the cylinder wall,
a no-slip condition is applied for the fluid velocity. In general, the hyperbolic nature
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Mesh Nnodes 	θmin 	rmin 	ymin

Mesh 1 96 460 0.02738 0.00149D 0.0172D
Mesh 2 115 580 0.02738 0.00149D 0.0172D

Table 1. Minimum mesh sizes along cylinder surface (	θmin and 	rmin) and along wake
centreline (	ymin).

of the cij evolution equation would mandate that no condition for cij be specified at
the wall; however, due to the presence of artificial diffusion, such a condition must be
explicitly enforced. Therefore in the present calculations, a no-flux condition is used
for cij in the normal direction at the cylinder surface (∂cij /∂n= 0). For the top and
bottom boundaries (in Mesh 2), a zero flux slip condition is used for both velocity
and polymer conformation since the boundary is sufficiently far from the cylinder
for the flow to be assumed parallel and unaffected by the interior dynamics. Finally,
periodic conditions in the spanwise direction are applied for both cases.

3. Code verification
3.1. Channel flow comparison

In order to test the validity of the viscoelastic computations, several steps were taken
to assess the accuracy of the code. First, a simulation was performed of steady fully
developed Poiseuille flow in a two-dimensional channel. For the FENE-P model, an
exact solution for the fully coupled viscoelastic problem has been previously derived
by Cruz, Pinho & Oliveira (2005), thus providing a direct comparison for the code.
For sake of clarity, a description of the derivation is omitted and only the exact
dimensionless solution for the present case is provided below.

From the conformation tensor evolution equation (2.4), it is found in Cruz et al.
(2005) that

τ
p

22 = τ
p

33 = τ
p

13 = τ
p

23 = 0. (3.1)

That is, all components of the polymeric stress τ
p
ij are zero except for τ

p
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which are given by (3.2) and (3.3).
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After solving the cubic equation for τ
p

12 at a given channel height and then using it to
obtain τ

p

11, it immediately follows that the trace of the conformation tensor is given
by

ckk =
τ

p

11 + 3

1 +
τ

p

11 + 3
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. (3.4)

From the trace ckk , all individual components of the conformation tensor can then be
found:

cij =
(
τ

p
ij + δij

) (
1 − ckk

L2

)
. (3.5)

Finally, the velocity profile in the channel exhibits a correction from the well-known
Newtonian parabolic solution due to the presence of viscoelasticity. By integrating
the momentum equation (2.2), the streamwise velocity u is shown in Cruz et al. (2005)
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Figure 3. Comparisons of analytic (—) and simulated (�) conformation tensor components
(a) c11, (b) c12 and (c) streamwise velocity u for Re = 100, Wi = 1.0, L2 = 10 000 and β =0.9.

to vary over the channel height y as

u(y) =
Re

2β

dp

dx

(
y2 − 1

) 1 − β

βWi

[
F +(H )G−(H ) − F +(y)G−(y)

+ F −(H )G+(H ) − F −(y)G+(y)
]
, (3.6)

where, using the same notation in Cruz et al. (2005), H is the channel half-height and

F ±(X) =

(
CX ±

√
A3 + (CX)2

)1/3

, (3.7)

G±(X) = 3CX ±
√

A3 + (CX)2 (3.8)

and

A=
L2

6

(
1 +

3

L2

(1 − β)

β

)
, (3.9)

C =
L2

4

ReWi

β

dp

dx
. (3.10)

Simulations were performed for channel flow with Re = 100, Wi = 1.0, L2 = 10 000
and β =0.9. The comparisons of the conformation tensor component profiles of c11

and c12 as well as the velocity profiles between the numerically calculated values and
the analytic solution are shown in figure 3. It is apparent that the solution obtained
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Figure 4. Relative error in the L2 norm of (a) c11, (b) c12 and (c) streamwise velocity u for
Re = 100, Wi = 1.0, L2 = 10 000 and β = 0.9.

numerically accurately captures the exact behaviour of the polymer conformation and
the solution velocity across the channel height, and furthermore these calculations
can be used to compute the order of accuracy of the solver. By successively refining
the grid in the channel height direction, error in velocity as well as all components of
cij was seen to decrease as nearly second order. This is shown in figure 4.

As mentioned previously, global artificial diffusion has been introduced into the
conformation tensor evolution equations, and its effect on the convergence rate
is also clearly illustrated in figure 4. By comparing the two curves in each plot,
it is immediately obvious that at a certain point in the refinement process, error
due to artificial diffusion begins to dominate and causes the convergence rate to
plateau. Since this occurs with sufficiently small relative error, however, the effect
on all subsequent simulations is assumed to be negligible. This assumption was later
qualitatively confirmed by observing no visible change in the solution as long as
the Schmidt number was maintained at O(10) or above. Furthermore, based on
the findings of Dubief et al. (2005), the amount of stress diffusion used presently
is not expected to have any deleterious effects on the flow structures or instability
mechanisms since its effects on the velocity field are contained to small-scale regions
of the velocity spectrum which do not exist for the current Reynolds-number regimes.

One important item to note is that for steady, laminar channel flow, artificial stress
diffusivity is actually not required to ensure numerically stable results, therefore mak-
ing this case a good indicator of the error due to the artificial diffusivity employed in
the current simulations. However, for all cylinder flows discussed subsequently (which
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have much higher polymer conformation gradients and are all unsteady in time),
numerical instabilities do form unless some small amount of diffusion is included.

3.2. Cylinder flow comparison

For the case of unsteady cylinder flow, an analytic solution does not exist, even
for the Newtonian case. Additionally, because the steady two-dimensional channel
flow used above does not exercise all terms of the governing equations, it is not
adequate to assume that more complex flow types will be free of other sources of
error. Therefore, additional methods of verification were used for the viscoelastic flow
over a cylinder, including a quantitative comparison to the simulations of Oliveira
(2001) and additional grid convergence studies.

Before discussing the results of this comparison, basic information about the time
stepping procedure must be introduced. For all simulations presented in this study, the
time step size 	t was chosen based on a CFL (Courant–Friedrichs–Lewy) number of
0.1. Furthermore, for the time-dependent cylinder flows, a stopping condition based
on the mean drag was used. When the time-averaged value of the mean did not
change appreciably for a desired period of time, the flow was considered statistically
steady and data was extracted. Although they are not included here, plotted signals
of all relevant quantities were seen to exhibit no visible numerical dissipation in time.

In Oliveira (2001), simulations were performed for a viscoelastic fluid governed by
the modified FENE-CR model (or modified Chilcott–Rallison model, FENE-MCR,
developed in Coates, Armstrong & Brown 1992) at a Reynolds number of 100 and a
Weissenberg number ranging from Wi = 0 (Newtonian) to Wi = 80.

The FENE-MCR model is derived directly from the FENE-CR model, which itself
is derived in an ad hoc manner from the FENE-P model (see Bird & Wiest 1995).
Whereas the equation governing the conformation tensor for the FENE-P model was
shown in (2.4), the FENE-CR evolution equation for cij remains the same except for
a subtle change in the definition of τ

p
ij :

τ cr
ij =

1

1 − ckk

L2

(
cij − δij

)
. (3.11)

From this, the FENE-MCR model is derived by making the approximation that
Df/Dt ≈ 0, where f =1/(1 − ckk/L

2). Applying this simplification negates the need
for defining a conformation tensor cij and allows for the direct solution of the polymer
stress τmcr

ij :

∂τmcr
ij

∂t
+ uk

∂τmcr
ij

∂xk

− τmcr
ik

∂uj

∂xk

− τmcr
kj

∂ui

∂xk

=
g

(
τmcr
ij

)
Wi

(
∂ui

∂xj

+
∂uj

∂xi

− τmcr
ij

)
, (3.12)

where

g
(
τmcr
ij

)
=

L2 − Wi τmcr
kk

L2 − 3
(3.13)

For the cases that will be used for comparison, Oliveira (2001) used a polymer
extensibility of L2 = 100 as well as a viscosity ratio of β = 0.9091.

Simulations were therefore performed using the same set of parameters not only for
the FENE-P model (that was introduced earlier and will be utilized in the remainder
of this study), but also using the FENE-MCR model used in Oliveira (2001) and
described above. Among other quantities reported in table 4 of Oliveira (2001), the
following measurements are compared to the current simulations:

(i) The vortex shedding frequency, defined as a dimensionless Strouhal number
(St ≡ ΩD/U∞, where Ω is the shedding frequency).
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Figure 5. Comparisons of simulated data with that of Oliveira (2001): (a) average drag
coefficient C̄D , (b) Strouhal number St , (c) streamwise root mean square (r.m.s.) velocity 1D
behind cylinder and (d ) transverse r.m.s. velocity 1D behind cylinder. Flow parameters are
Re = 100, L2 = 100 and β = 0.9091.

(ii) The total time-averaged drag on the cylinder, C̄D ≡ 1/2
(
CD,max + CD,min

)
.

CD,max and CD,min indicate maxima and minima in time, respectively.
(iii) The r.m.s. transverse and streamwise velocities u′ and v′ along the y = 0 line

at a x location of 1D downstream of the cylinder
These comparisons are shown in figure 5. As can be seen in the plots, values

from Oliveira (2001) and simulations performed with the FENE-MCR model show
relatively good agreement for the drag and shedding frequency (each within 5 %), but
relative errors as large as 36 % are seen for the velocity fluctuations at high Wi. This
discrepancy likely has to do with the small magnitude of the velocity fluctuations
compared to the mean values, thus making these quantities more susceptible to small
numerical and round-off errors. Furthermore, data from the FENE-P simulations
are qualitatively in agreement as well, in that they exhibit a reduction in vortex
shedding frequency with increasing elasticity as well as a decrease in average drag
and velocity fluctuations in the wake. The close agreement of the drag and frequency
data, coupled with the convergence data which will be described shortly, provides
sufficient confidence that the numerical method employed herein provides faithful
results. Note that the FENE-MCR model has only been utilized here for comparison
purposes, and that in all subsequent simulations only the FENE-P model will be
used.
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Quantity Original mesh Refined mesh % Difference

St 0.1576 0.1574 0.127
C̄D 1.2157 1.2155 0.017
C̄

pressure
D 0.9142 0.9138 0.044

C̄viscous
D 0.2614 0.2611 0.115

C̄
polymer
D 0.0401 0.0407 1.49

u′ 0.0021 0.002 4.76
v′ 0.0528 0.0515 2.46

Table 2. Mesh refinement results for Re = 100, Wi = 10, L2 = 100 and β = 0.9091.

In addition to comparing the current code to previous simulations, mesh refinement
was also used to illustrate the grid independence of the solutions for the FENE-P
calculations. First, for the case of two-dimensional laminar vortex shedding (Re =100),
the same quantitative data that was compared to Oliveira (2001) was evaluated for two
different mesh resolutions. Starting with Mesh 1, all grid cell lengths were consistently
halved, thus making the test mesh twice as refined as the original. The quantities
monitored during the mesh refinement consisted of the same data that was compared
to Oliveira (2001) (St , C̄D , u′ and v′), as well as the individual components of the total
drag resulting from pressure forces, viscous stresses and viscoelastic stresses, denoted
C̄

pressure
D , C̄viscous

D and C̄
polymer
D , respectively. These parameters were observed be nearly

unchanged, varying less than 5 % for all quantities, as seen in table 2.
For the case of Re =300, a slightly different mesh refinement procedure was used to

illustrate the grid independence of the solutions obtained. Starting with Mesh 2 with a
spanwise domain length of 2πD, the number of grid points in the spanwise direction
was increased until mean and average fluctuating velocity profiles in the cylinder
wake converged, since for Re = 300 the flow contains significant three-dimensional
motions. The profiles of the streamwise velocity fluctuations u′ are shown figure 6.
Other statistical quantities were also monitored (mean streamwise and transverse
velocities and transverse velocity fluctuations), and similar convergence was attained.
In the plots, the notation N32 refers to 32 discretization points over the spanwise
length of 2πD, N48 to 48 points, etc. Noting that the profiles converge around 64
points, the mesh N64 was used for all Re = 300 results presented subsequently.

The combination of these validation tests illustrate that the viscoelastic code
which has been developed is adequate for investigating a wide variety of unexplored
problems, and interesting results from several different simulations will be presented
in the following section.

4. Results and discussion
4.1. Re = 100

In Oliveira (2001) and in the previous section, it was shown that, in general,
increased viscoelasticity produced a modest decrease in both the drag amplitude
(defined 	CD ≡ 1/2(CD,max − CD,min)) and the time-averaged drag, C̄D . Furthermore,
the frequency of vortex shedding (St) was also found to decrease simultaneously with
a lengthening of the recirculation bubble immediately behind the cylinder. This, as
was further discussed by Sahin & Owens (2004), is indicative of the stabilizing nature
of viscoelasticity on the shear layer that develops as fluid flows over the cylinder
surface. In fact, earlier work done by Azaiez & Homsy (1994a) on the linear stability
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Figure 6. Spanwise mesh convergence plots for streamwise average fluctuating velocity
profiles at multiple downstream stations. Simulations performed at Re = 300, Wi = 10, L2 = 100
and β = 0.9. (�) N30; (�) N48; (+) N64; (�) N80.

of Oldroyd-B fluids has shown that shear instability growth rates are suppressed by
the presence of viscoelasticity.

For many of the calculations performed by Oliveira (2001), a polymer extensibility
of L2 = 100 was used, and the effect of L was tested up to a value of L2 = 1200. In
Sahin & Owens (2004), who also utilize the FENE-MCR model, values of L2 were no
greater than 144 (note that in the limit L2 → ∞ the family of FENE models approach
the Hookean Oldroyd-B representation). As Oliveira (2001) points out, values of
L2 ∼ O(100) can be appropriate for Boger fluids at high concentration, but for the
types of flow motivating this study, much higher values are required. For example,
in numerous recent studies done on turbulent drag reduction, typical values of L2

range of the order of 10 000 or above, which are required to reproduce experimentally
observed values of the decrease in drag (Dimitropoulos et al. 2005; Dubief et al.
2005; Gupta et al. 2005; Dimitropoulos et al. 2006; Li et al. 2006). In these studies,
the effect of viscoelasticity on the flow structure can be profound, therefore, for the
case of two-dimensional vortex shedding at Re =100, we chose to study the effect of
high L in detail.

After setting L2 = 10 000, Wi =10 and keeping the viscosity ratio β constant at
0.9, simulations revealed major qualitative changes to the cylinder wake structure
as compared to the L2 = 100 and Newtonian cases. This is easily seen in the
comparison of figure 7. In the figure, contours of the polymer stretch ckk are
shown, normalized with their maximum value within the domain. With the increase
in polymer extensibility, there is a dramatic lengthening of the recirculation region
behind the cylinder, closely resembling the different downstream behaviour of polymer
additives WSR 301 and WSR 303 as shown experimentally by Cadot & Lebey (1998).
Measuring the length of the recirculation bubble l as the distance between the rear
stagnation point of the cylinder and the point where the maximum transverse velocity
fluctuation occurs, this distance increases from l = 4.18D to l = 5.16D.

Although Cadot & Lebey (1998) cite a difference in elasticity number
(E ≡ Wi/Re = λν/δ2, where λ is the polymer relaxation time, ν the fluid viscosity
and δ the shear layer thickness) as the cause of the further lengthening of the
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(a)

(b)

Figure 7. Comparison of vortex shedding pattern between L2 = 100 and L2 = 10 000. Contours
are of normalized trace ckk/max(ckk). Levels include ckk/max(ckk) = 0.2, 0.4, 0.6, 0.8 and
1.0. Maximum ckk for each case are (a) max(ckk) = 97.39, (b) max(ckk) = 7904. Simulations
performed at Re = 100, Wi =10 and β = 0.9.

recirculation region when using WSR 303 versus WSR 301, figure 7 suggests that
extensional properties, namely extensional viscosity, must play a role in the delay of
shear layer instabilities since in both cases the Weissenberg number is held constant.
This is consistent with the conclusions of the previous experimental work of Cressman
et al. (2001) and computational work of Sahin & Owens (2004).

Furthermore, in an effort to determine whether or not this lengthening of the
wake is a result of a transient value or a plateau value of the extensional viscosity,
the total strain experienced by a polymer was computed along several streamlines
which travel through the shear layer. By projecting the local strain rate onto the
local polymer orientation (easily computed from the conformation cij ), it was found
that after integrating up to the point where a vortex was being shed, the total
strain felt by a dumbbell residing in the shear layer was roughly ε ≈ 4. Based on
numerous experimental studies, this amount of strain is not adequate for a steady
extensional viscosity to form before the polymer is entrained into a developing vortex
(see McKinley & Sridhar 2002). Therefore, we conclude that this effect is due to a
transient value of the extensional viscosity.

Perhaps more remarkable than the increase in the recirculation region is the
response of the cylinder drag due to the increase in polymer extensibility. As we recall
from figure 5, when holding the extensibility L2 constant at 100, the average drag
reduced by approximately 9 % when increasing Wi from 0 to 80. This behaviour has
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Figure 8. Dimensionless pressure distribution over cylinder for Newtonian flow and for
L2 = 100 with varying Wi. (�) Newtonian; (�) Wi = 10; (�) Wi = 80. Polar angle θ measured
counter-clockwise from rear stagnation point. Re = 100 and β =0.9 for all simulations.

been seen experimentally by Coelho & Pinho (2004), who see a form drag decrease
for dilute solutions of tylose and CMC at Re < 800, and Kato & Mizuno (1983), who
observe similar behaviour for dilute PEO solutions. This decrease is said to result
from a rising base pressure on the back side of the cylinder, which is required to
maintain an equilibrium of forces on the recirculation bubble due to a decrease in
shear stresses (Coelho & Pinho 2004). A rise in the back pressure is in fact seen
experimentally in both studies, which, integrated over the surface of the cylinder,
results in a diminished form drag. In the present simulations, the base pressure for
the case of low polymer extensibility exhibited this same behaviour, as seen in figure 8
where the time-averaged pressure distribution over the cylinder is plotted.

For larger polymer extensibilities, however, the drag actually increases when
compared to the Newtonian value at a constant Wi. At Wi =10 and L2 = 10 000, the
average drag coefficient takes on a value of C̄D = 2.7, compared to the L2 = 100 value
of 1.25 and the Newtonian value of 1.34. This dramatic drag increase has also been
seen experimentally by James & Gupta (1971), who observed a similar substantial
increase in drag for different polymer solutions with different blends of polyox WSR
(not the same used by Cadot & Lebey 1998). To explain the striking difference between
this case and that of lower polymer extensibility, the time-averaged surface pressure
distribution for increasingly high L is shown in figure 9. Comparing this to figure 8,
it is immediately obvious that the jump in drag is due to the significantly changed
pressure distribution on the cylinder. Although there is still a modest increase in the
back pressure, the high extensibility case is dominated instead by a near threefold
increase in the forward stagnation point pressure as L2 is increased towards a value
of 22 500. It has been speculated that the cause of this effect results from the solid-like
behaviour of the viscoelastic fluid (see Coelho & Pinho 2004; Metzner & Astarita
1967).

To explain this effect, the plots of figure 10 show the velocity, pressure and polymer
fractional extension along the upstream stagnation streamline (the cylinder surface
is located at x/D = −0.5). Note that the same profiles for Newtonian flow are not
included since they are quantitatively similar to that of the Wi = 10, L2 = 100 case
(shown with solid lines). As a fluid element traverses the forward stagnation streamline,
it eventually reaches a point where it begins to behave as if it were approaching a
solid wall. For the L2 = 100 case, this point is nearly located on the cylinder surface
(x/D ≈ −0.55), while for the high extensibility case, this point is offset to a point
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Figure 9. Dimensionless pressure distribution over cylinder at Wi = 10 and increasing L. (�)
L2 = 100; (�) L2 = 10 000; (�) L2 = 22 500. Polar angle θ measured counter-clockwise from
rear stagnation point. Re = 100 and β = 0.9 for all simulations.
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Figure 10. Computed values of (a) streamwise velocity ux , (b) dimensionless pressure p̄/(ρU 2
∞)

and (c) polymer fractional extension ckk/L
2 along the stagnation streamline. (—) Wi = 10,

L2 = 100; (- - -) Wi = 10, L2 = 10 000. Cylinder forward stagnation point begins at x/D = −0.5.
Re = 100 and β = 0.9 for all simulations.

slightly upstream: x/D ≈ −0.65. At these locations, a sharp increase in the polymer
stretch (figure 10c) coincides with a decrease to a near-zero velocity (figure 10a)
and a rise in pressure to its Bernoulli-type stagnation value of p̄ = 0.5 (figure 10b).
Note that beyond the offset stagnation point of x/D ≈ −0.65, the pressure for the



434 D. Richter, G. Iaccarino and E. S. G. Shaqfeh

5001000 1500 2000 2500 3000 3500 2000 8800 15600 22400 29200 36000

(a) (b)

Figure 11. Upstream velocity streamlines showing the ‘offset’ stagnation point due to high
polymeric stress. (a) Wi = 10, L2 = 100; (b) Wi = 10, L2 = 10 000. Contours are of τ

p
22 with

values shown in legend. Re = 100 and β = 0.9 for both simulations.

L2 = 10 000 case rises dramatically above this value due to the high polymer stresses
near the cylinder surface.

According to the work done by Metzner & Astarita (1967), an appropriate measure
of the solid-like response of viscoelastic fluids near stagnation point flow is a
local Deborah number based on the material rate of change of the strain rate:
Delocal = λ

√
|DΓ/Dt |, where, as before, λ is a characteristic polymer relaxation time

and Γ is the second invariant of the local strain rate tensor. This dimensionless
parameter provides a ratio of the polymer relaxation time scale to the flow time
scale based on the local deformation rate; thus, for high Delocal , fluid strain occurs
on time scales smaller than the stress relaxation time of the polymer, resulting in
a solid-like response of the viscoelastic fluid. When computing these values, a peak
in Delocal which is several times the magnitude of the flow Weissenberg number is
found to occur in the same locations: a peak of Delocal = 36.7 at x/D ≈ −0.55 for
the low extensibility case and a peak of Delocal = 21.2 at x/D ≈ −0.65 for the high
extensibility case.

Finally, figure 11 further illustrates this offset stagnation point by showing contours
of polymer stress τ

p

22 with velocity streamlines overlayed. For Wi = 10 and L2 = 100
(figure 11a), only modest polymeric stresses develop, and thus the streamlines are
not altered significantly from their Newtonian counterpart (not shown). However,
for the Wi =10, L2 = 10 000 case (figure 11a), the polymer stresses are roughly an
order of magnitude larger, which causes the upstream flow to be diverted at the
same respective locations mentioned previously. Comparing figure 11(b) with figure
1 of Metzner & Astarita (1967) clearly corroborates their discussion of a solid-like
stagnation point boundary.

As a final note for the Re = 100 case, the effects of shear thinning and polymer
concentration were briefly investigated. As reported by Coelho & Pinho (2003b),
the effect of shear thinning on viscoelastic cylinder flow is to increase the vortex
shedding frequency, while fluid elasticity tends to decrease it. Therefore, since the
FENE-P model exhibits shear thinning behaviour through the extra polymer stress
τ

p
ij , additional simulations were performed at β = 0.5 (rather than β =0.9) in order

to probe the effect of increasing the shear thinning contribution to the total viscosity.
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At this value of the viscosity ratio, the value of St at Weissenberg numbers ranging
from 0 to 80 were seen to actually decrease further from the Newtonian value than the
previous β = 0.9 results, while the drag increased (seen in figure 5). This is qualitatively
the same behaviour as when the polymer extensibility was increased from L2 = 100
to L2 = 10 000. Furthermore, contours of polymer stretch and velocity in the cylinder
wake (not shown) revealed similar characteristics to the high polymer extensibility
case seen in figure 7(b). This is entirely consistent with the experimental findings
of Coelho & Pinho (2003b) since as β is decreased, the decreased shear viscosity is
accompanied by an increased extensional viscosity. Therefore, although the FENE-P
fluid is shear thinning, lowering the viscosity ratio β results in a competing increase
in the extensional viscosity which causes the same rise in drag, decrease in St ,
and lengthening in the wake as seen when increasing the polymer extensibility L.
Moreover, this behaviour is further corroborated by experiments done by Usui et al.
(1980), who note a decrease in vortex shedding frequency whose magnitude increases
with increasing polymer concentration. Again this is entirely consistent with the
present results since the parameter β effectively controls the polymer concentration.

4.2. Re = 300

At a value of Re = 300, Newtonian flow past a cylinder is located in the so-called
wake transition regime, where three-dimensional structures begin to form in the wake
as transition takes place from the purely laminar two-dimensional case (Williamson
1996b; Zdravkovich 1997). This regime is demarcated by a Reynolds number at
which a sharp, hysteretic drop in the shedding frequency is observed and inception
of spanwise instabilities occurs, termed mode ‘A’ instabilities by Williamson (1996a).
These mode A instabilities are a result of vortex loops that form and stretch into
streamwise vortex pairs and have a spanwise wavelength of ∼3.5D. With further
increase in the Reynolds number, mode A instabilities give way to a new mode of
spanwise instability, referred to as mode ‘B’ instabilities. The mode B instabilities are
smaller in scale compared to the mode A counterpart, and appear as counter-rotating
streamwise vortices immediately downstream of the cylinder with a wavelength of
∼1D. As with the mode A instabilities, the mode B vortices are indicative of three-
dimensional transition in Newtonian flow, but they are present until the entire shear
layer breaks down to full turbulence.

To evaluate the effect of viscoelasticity on the formation of three-dimensional wake
instabilities, simulations were first performed at Re = 300 with L2 = 100, Wi = 10 and
β = 0.9. At this Reynolds number, mode B instabilities should dominate the spanwise
structure (rather than mode A) for a Newtonian fluid (see Williamson 1996a). From
the isosurfaces of streamwise vorticity (ωx = ± 0.5) compared in figure 12, it is clear
that viscoelasticity suppresses the formation of these mode B instabilities. Instead
of exhibiting their highly regular alternating pattern as in the Newtonian case, the
streamwise vortices that form are fewer in number across the span of the domain
in the presence of viscoelasticity. In fact, the spanwise wavelength of the streamwise
vortices in the Newtonian case is λ≈ 0.93D, agreeing with experiments of Williamson
(1996a), while that of the viscoelastic case increases threefold: λ≈ 3.30D.

One interesting point to note is that the characteristic wavelength of the mode
A instabilities for a Newtonian fluid is λ≈ 3D at this Reynolds number, so at first
glance it may appear that viscoelasticity is merely delaying the onset of the Newtonian
modes of three-dimensional transition. Corroborating this conjecture, the symmetries
of the vortices found in figures 12(a) and 12(b) are found to agree with those of
mode B and mode A instabilities, respectively. As described in detail in Williamson
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(a)

(b)

Figure 12. Comparison of streamwise vorticity isosurfaces (ωx = ± 0.5) in Re = 300 flow.
(a) Newtonian; (b) Wi = 10, L2 = 100 and β = 0.9.

(1996a), mode A instabilities exhibit opposite signs of rotation on either side of a
primary spanwise vortex, while mode B instabilities maintain the same sign through
the primary spanwise vortices. This pattern can be seen in the current simulations by
inspecting the signs of vorticity in the contours of figure 12 and following one vortex
filament in the downstream direction.

In order to verify that this modified vortex structure is genuine and not a
consequence of the spanwise domain size, the same simulation was performed on
a grid whose span was doubled (from 2πD to 4πD) and both the structure and
wavelength were found to remain the same.

As in the case of Re = 100, the effect of raising the polymer extensibility from
L2 = 100 to a length of L2 = 10 000 is significant. Isosurfaces of polymer fractional
extension (ckk/L

2) are presented in figure 13, and the most striking effect of the
high extensibility is the complete suppression of all three-dimensional structure.
All streamwise vorticity is inhibited, and the two-dimensional wake profile looks
qualitatively similar to that of the Re =100, L2 = 10 000, Wi = 10 case. Thus, one
important point to keep in mind is that if figure 12 included the results from the high
extensibility case, or equivalently if figure 13 were plotted with streamwise vorticity
isosurfaces, nothing would appear.

The experiments of Cadot & Kumar (2000) observed this same effect by injecting
high-molecular-weight Polyox WSR 303 into flows at slightly lower Reynolds numbers.
At Re = 190, a Reynolds number which exhibits the longer wavelength mode A
instabilities in the Newtonian case, Cadot & Kumar (2000) see a near complete
suppression of all spanwise variation at adequately high polymer concentration. Citing
previous numerical work on the roll-up instabilities of a FENE-P fluid (Kumar &
Homsy 1999), they speculate that this suppression of three-dimensional instability
growth is due to a modification of the spanwise vortices that develop rather than a
purely three-dimensional effect.

To illustrate that this truly is the physical mechanism responsible for this three-
dimensional instability suppression, figure 14 shows instantaneous contours of
spanwise vorticity in the x–y planes (at z/D =3.14) for both L2 = 100 and L2 = 10 000.
Dark contours indicate a value of ωz = −1.5 and white contours indicate ωz = + 1.5.
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(a) (b)

Figure 13. Isosurfaces of 25 % fractional extension (ckk/L
2 = 0.25) showing suppression of

three-dimensional structures with high polymer extensibility. (a) Re = 300, Wi = 10, L2 = 100,
β = 0.9; (b) Re = 300, Wi = 10, L2 = 10 000, β = 0.9.

(a)

(b)

Figure 14. Contours of spanwise vorticity in a plane located at z/D = 3.14. Dark colouring
indicates ωz = −1.5 and light colouring indicates ωz = + 1.5. (a) Re = 300, Wi = 10, L2 = 100,
β = 0.9; (b) Re = 300, Wi = 10, L2 = 10 000, β = 0.9.

In the case of L2 = 100 (figure 14a), the primary vortex roll-up process looks very
similar to that of Newtonian flow. Here, large regions of positive spanwise vorticity
are generated from the lower shear layer and regions of negative spanwise vorticity
are generated in the upper shear layer, as expected. In general, coherent structures
of like-signed vorticity do not mix with vorticity of opposite sign, and the highest
magnitude vorticity (in the wake) is found in the centre of each primary vortex.

For higher polymer extensibility, however, shown in figure 14(b), small regions of
opposite signed vorticity are generated near the core of each primary vortex, greatly
inhibiting its formation. In their study of a time-developing shear layer, Kumar &
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Homsy (1999) observe similar behaviour. They found that during the two-dimensional
roll-up process, contributions from the elastic source term in the vorticity transport
equation prevented the spanwise vorticity to concentrate into a single core, thus
resisting the two-dimensional roll-up. Kumar & Homsy (1999) then show that this
interference with two-dimensional roll-up is a much more effective mechanism for
suppressing the growth of three-dimensional instabilities than elasticity merely slowing
the growth from an already-developed two-dimensional base state. In other words, for
cases where the primary vortex roll-up is unaffected, stabilization to three-dimensional
instabilities is weakened relative to the case where the primary vortex sheet is greatly
distorted. Comparing these results to the current simulations, we see that exactly the
same mechanism is manifesting itself in the cylinder wake. For the case of Wi = 10,
L2 = 100, the two-dimensional primary vortex roll-up is relatively unaffected by the
presence of viscoelasticity (seen in figure 14a), and as a result, the resistance of the
flow to the three-dimensional mode B instabilities is modest (figure 12b). In the case
of Wi = 10, L2 = 10 000, significant distortion of the primary vortex street is observed
(figure 14b), thus completely stabilizing the growth of all three-dimensional structures
(figure 13b).

5. Conclusions
By modifying an existing incompressible Navier–Stokes flow solver created at Stanford
University, a code was developed that was used to perform a detailed investigation
of the physical effects that viscoelasticity has on a canonical bluff body flow. After
validating the accuracy of the code through a series of test cases, simulations were
performed at two distinct Reynolds numbers: Re = 100 and Re = 300. For the former,
results were first compared to existing simulations at the same Re as completed by
Oliveira (2001). For modest values of the polymer extensibility (L2 = 100), the same
effects seen in Oliveira (2001) were observed; namely, a slight reduction in the vortex
shedding frequency, a reduction in the time-averaged drag (as well as all individual
components of the drag), a lengthening of the recirculation region behind the cylinder,
and a dampening of velocity fluctuations in the wake. However, upon increasing the
polymer extensibility (L2 = 10 000), significant qualitative changes to the cylinder
wake were discovered. In this case, the time-averaged drag sharply increased with
increasing polymer extensibility due to a solid-like behaviour of the polymer stress
on the forward stagnation point. As with the effects at low polymer extensibility, this
is an effect which had previously been seen experimentally.

For the case of Re = 300, results focused on the ability of the viscoelasticity
to stabilize the flow to three-dimensional instabilities. For Newtonian flow at this
Reynolds number, mode B instabilities dominate the near-wake structure, but
when polymer additives are introduced, the characteristic spanwise vortices undergo
significant alterations. For low polymer extensibilities (L2 = 100), the spanwise vortex
wavelength increases from roughly 1D towards 3D (one more closely resembling
that of mode A instabilities). This, coupled with the fact that the streamwise vortex
symmetry also appears to resemble that of mode A instabilities hints of a stabilization
mechanism which merely delays the Newtonian modes of instability. Without further
evidence, this result cannot be stated conclusively and thus it provides a very
interesting topic of future work. Flows with a high polymer extensibility (L2 = 10 000),
however, exhibit a total suppression of all three-dimensional instability growth. Like
the suppression of mode A instabilities seen by Cadot & Kumar (2000), a high
polymer extensibility appears to suppress the formation of mode B instabilities. The
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mechanism behind this suppression was drawn from that of Kumar & Homsy (1999)
and is primarily due to an inhibition of the formation of the primary spanwise
vortices.

Finally, because one of the primary goals of this study was to extend the
understanding gained from existing turbulent drag reduction studies, it seems
prudent to relate the current findings to the underlying drag reduction mechanisms
which have been previously discovered. Specifically, the recent work done by Stone
et al. (2004) and Kim et al. (2007) clearly illustrate the importance of streamwise
vorticity dampening within the turbulent buffer layer to achieve reductions in near-
wall Reynolds stresses and thus reduced drag. By examining the interaction of
viscoelasticity with exact coherent states (ECS) found in plane Couette flow, Stone
et al. (2004) showed that for moderately low Reynolds numbers, streamwise vortical
structures which dominate the Newtonian solution are weakened by the presence of
viscoelastic stresses. This causes both a redistribution near-wall velocity fluctuations,
and stabilizes the flow (seen by an upward shift in the minimum Reynolds number
required for a drag-reduced ECS solution to exist). To extend this description, Kim
et al. (2007) use conditional eddies from direct numerical simulation data to illustrate
the mechanistically simple explanation of viscoelastic torques which are found acting
against the near-wall streamwise vortices in drag-reduced high-Reynolds-number
channel flow. Again, they report that this effect is at least partially the cause of
dampening of Reynolds shear stress production and thus contributes to overall drag
reduction.

Therefore, the mode B instability suppression found in the present study can now
be seen in a different light. Although the shear layers developed in the wake of a
cylinder are not entirely analogous to the plane shear flow of Stone et al. (2004),
the dampening of streamwise vortical structures in the cylinder wake obviously
has certain implications for the near-wall vortices of turbulent channel flow. As
pointed out by Cadot & Kumar (2000) after experimentally observing a dampening
of mode A instabilities, the stabilization of Kelvin–Helmholtz type instabilities is
one method through which viscoelasticity can inhibit vorticity filament formation in
turbulent flows. Since such an inflectional instability is one step in the self-sustaining
process of ECS structures of Stone et al. (2004), and since the existence of the ECS
presumably precedes transition to turbulence, the mechanisms seen in the present
study for delaying the onset of primary roll-up instabilities formed in the wake can be
related to mechanisms through which polymer additives can reduce skin friction drag.
Furthermore, the concept of weakening near-wall vortices through viscoelastic torques
described by Kim et al. (2007) could possibly be applied to the present case, since
preliminary evidence suggests that these torques do exist in the wake immediately
behind the cylinder (not shown here). Thus, the mechanisms behind drag reduction
and the mode B instability suppression may have a partially common explanation.
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Kalashnikov, V. & Kudin, A. 1970 Kármán vortices in the flow of drag-reducing polymer solutions.
Nature 225, 445–446.

Kato, H. & Mizuno, Y. 1983 An experimental investigation of viscoelastic flow past a circular
cylinder. Bull. Japan Soc. Mech. Eng. 26 (214), 529–536.

Kim, K., Li, C., Sureshkumar, R., Balachandar, S. & Adrian, R. 2007 Effects of polymer stresses
on eddy structures in drag-reduced turbulent channel flow. J. Fluid Mech. 584, 281–299.

Kumar, S. & Homsy, G. 1999 Direct numerical simulation of hydrodynamic instabilities in two-
and three-dimensional viscoelastic free shear layers. J. Non-Newton. Fluid Mech. 83, 249–276.

Li, C., Sureshkumar, R. & Khomami, B. 2006 Influence of rheological parameters on polymer
induced turbulent drag reduction. J. Non-Newton. Fluid Mech. 140, 23–40.

Liu, A., Bornside, D., Armstrong, R. & Brown, R. 1998 Viscoelastic flow of polymer solutions
around a periodic, linear array of cylinders: comparisons of predictions for microstructure
and flow fields. J. Non-Newton. Fluid Mech. 77, 153–190.

Ma, X., Symeonidis, V. & Karniadakis, G. 2003 A spectral vanishing viscosity method for stabilizing
viscoelastic flows. J. Non-Newton. Fluid Mech. 115, 125–155.

Mahesh, K., Constantinescu, G. & Moin, P. 2004 A numerical method for large-eddy simulation
in complex geometries. J. Comput. Phys. 197, 215–240.

Manero, O. & Mena, B. 1981 On the slow flow of viscoelastic fluids past a circular cylinder.
J. Non-Newton. Fluid Mech. 9, 379–387.

McKinley, G., Armstrong, R. & Brown, R. 1993 The wake instability in viscoelastic flow past
confined circular cylinders. Phil. Trans. R. Soc. Lond. 344 (1671), 265–304.

McKinley, G. & Sridhar, T. 2002 Filament-stretching rheometry of complex fluids. Annu. Rev.
Fluid Mech. 34, 375–415.

Mena, B. & Caswell, B. 1974 Slow flow of an elastic-viscous fluid past an immersed body. Chem.
Engng J. 8, 125–134.

Metzner, A. & Astarita, G. 1967 External flows of viscoelastic materials: fluid property restrictions
on the use of velocity-sensitive probes. AIChE J. 13 (3), 550–555.

Oliveira, P. J. 2001 Method for time-dependent simulations of viscoelastic flows: vortex shedding
behind cylinder. J. Non-Newton. Fluid Mech. 101, 113–137.

Oliveira, P., Pinho, F. & Pinto, G. 1998 Numerical simulation of nonlinear elastic flows with a
general collocated finite-volume method. J. Non-Newton. Fluid Mech. 79, 1–43.

Phan-Thien, N. & Dou, H. 1999 Viscoelastic flow past a cylinder: drag coefficient. Comput. Methods
Appl. Mech. Engng 180, 243–266.

Pipe, C. J. & Monkewitz, P. A. 2006 Vortex shedding in flows of dilute polymer solutions.
J. Non-Newton. Fluid Mech. 139, 54–67.

Purnode, B. & Legat, V. 1996 Hyperbolicity and change of type in flows of fene-p fluids.
J. Non-Newton. Fluid Mech. 65, 111–129.

Sahin, M. & Owens, R. G. 2004 On the effects of viscoelasticity on two-dimensional vortex dynamics
in the cylinder wake. J. Non-Newton. Fluid Mech. 123, 121–139.

Sibilla, S. & Baron, A. 2002 Polymer stress statistics in the near-wall turbulent flow of a drag-
reducing solution. Phys. Fluids 14, 1123–1136.

Stone, P., Roy, A., Larson, R., Waleffe, F. & Graham, M. 2004 Polymer drag reduction in exact
coherent structures of plane shear flow. Phys. Fluids 16 (9), 3470–3482.

Sureshkumar, R. & Beris, A. 1995 Effect of artificial stress diffusivity on the stability of numerical
calculations and the flow dynamics of time-dependent viscoelastic flows. J. Non-Newton. Fluid
Mech. 60, 53–80.

Sureshkumar, R., Beris, A. N. & Handler, R. A. 1997 Direct numerical simulation of the
turbulent channel flow of a polymer solution. Phys. Fluids 9 (3), 743–755.

Townsend, P. 1980 A numerical simulation of newtonian and visco-elastic flow past stationary and
rotating cylinders. J. Non-Newton. Fluid Mech. 6, 219–243.

Ultman, J. & Denn, M. 1971 Slow viscoelastic flow past submerged objects. Chem. Engng J. 2,
81–89.
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